Carbon/nanostructured Ruthenium composites as electrodes for supercapacitors
Nafion is a sulfonated tetrafluoroethylene based fluoropolymer-copolymer discovered in the late 1960s by Walther Grot of DuPont. It is the first of a class of synthetic polymers with ionic properties which are called ionomers.
Although fuel cells have been used since the 1960s as power supplies for satellites, recently they have received renewed attention for their potential to efficiently produce clean energy from hydrogen.
Nafion was found effective as a membrane for proton exchange membrane (PEM) fuel cells by permitting hydrogen ion transport while preventing electron conduction. Solid Polymer Electrolytes, which are made by connecting or depositing electrodes (usually noble metal) to both sides of the membrane, conduct the electrons through an energy requiring process and rejoin the hydrogen ions to react with oxygen and produce water.
Nafion, as a superacid, has potential as a catalyst for organic synthesis. Studies have demonstrated catalytic properties in alkylation, isomerization, oligomerization, acylation, ketalization, esterification, hydrolysis of sugars and ethers, and oxidation.
Nafion has found use in the production of sensors, which with application in ion-selective, metallicized, optical, and biosensors. What makes Nafion especially interesting is its demonstration in biocompatibility. Nafion has been shown to be stable in cell cultures as well as the human body, and there is considerable research towards the production of higher sensitivity glucose sensors.
Normal Nafion will dehydrate (thus lose proton conductivity) when temperature is above 80oC or so. This limitation troubles the design of fuel cells, because higher temperatures are desirable for a better efficiency and CO tolerance of the platinum catalyst. Silica and zirconium phosphate can be incorporated into Nafion water channels through in situ chemical reaction to increase the working temperature to above 100oC.
A supercapacitor using non-aqueous electrolyte and multiwalled carbon nanotube (MWNTs) nanocomposite electrodes has been designed with polymer and metal oxide loaded carbon nanotubes as electrodes. These nanocomposites were coated on the carbon paper with Nafion solution to obtain the flexible electrodes. Carbon paper with the nanocomposite coating was pressed on either sides of the Nafion membrane, which acts both as a separator and as an electrolyte. The performance of asymmetric assembly of electrochemical double layer capacitor with polymer- and metal oxide-dispersed MWNTs composite materials with non-aqueous Nafion electrolyte is compared with symmetric assemblies.
Processing 100 percent Silica Optical Fiber waveguides using sol-gel Technology
http://www2.fis.ua.pt/solgel2009/outline.html
Nafion is a sulfonated tetrafluoroethylene based fluoropolymer-copolymer discovered in the late 1960s by Walther Grot of DuPont. It is the first of a class of synthetic polymers with ionic properties which are called ionomers.
Although fuel cells have been used since the 1960s as power supplies for satellites, recently they have received renewed attention for their potential to efficiently produce clean energy from hydrogen.
Nafion was found effective as a membrane for proton exchange membrane (PEM) fuel cells by permitting hydrogen ion transport while preventing electron conduction. Solid Polymer Electrolytes, which are made by connecting or depositing electrodes (usually noble metal) to both sides of the membrane, conduct the electrons through an energy requiring process and rejoin the hydrogen ions to react with oxygen and produce water.
Nafion, as a superacid, has potential as a catalyst for organic synthesis. Studies have demonstrated catalytic properties in alkylation, isomerization, oligomerization, acylation, ketalization, esterification, hydrolysis of sugars and ethers, and oxidation.
Nafion has found use in the production of sensors, which with application in ion-selective, metallicized, optical, and biosensors. What makes Nafion especially interesting is its demonstration in biocompatibility. Nafion has been shown to be stable in cell cultures as well as the human body, and there is considerable research towards the production of higher sensitivity glucose sensors.
Normal Nafion will dehydrate (thus lose proton conductivity) when temperature is above 80oC or so. This limitation troubles the design of fuel cells, because higher temperatures are desirable for a better efficiency and CO tolerance of the platinum catalyst. Silica and zirconium phosphate can be incorporated into Nafion water channels through in situ chemical reaction to increase the working temperature to above 100oC.
A supercapacitor using non-aqueous electrolyte and multiwalled carbon nanotube (MWNTs) nanocomposite electrodes has been designed with polymer and metal oxide loaded carbon nanotubes as electrodes. These nanocomposites were coated on the carbon paper with Nafion solution to obtain the flexible electrodes. Carbon paper with the nanocomposite coating was pressed on either sides of the Nafion membrane, which acts both as a separator and as an electrolyte. The performance of asymmetric assembly of electrochemical double layer capacitor with polymer- and metal oxide-dispersed MWNTs composite materials with non-aqueous Nafion electrolyte is compared with symmetric assemblies.
Processing 100 percent Silica Optical Fiber waveguides using sol-gel Technology
http://www2.fis.ua.pt/solgel2009/outline.html
Comment